打开APP

面试你的AI“小姐姐”真有那么神?

AI算法并非“生来”客观,招聘软件也会带来新的偏差和歧视,误刷掉有能力的应聘者,甚至让企业陷入被动境地。

继可口可乐、联合利华等巨头采购AI招聘系统后,国内招聘平台智联招聘也推出了视频面试产品“AI易面”。在面试中AI能进行语义分析、视频分析,还能给出一些固定套路的面试题,加上经典的性格和智力测评,“AI易面”就可以智能完成人岗匹配。

听起来似乎HR已经被AI踢出了招聘流程,但这种新技术也存在不少问题。

原本AI招聘的卖点是可以消除企业在招聘过程中的人为偏见,让企业和求职者都能从招聘中受益。但实际应用起来可没那么容易,AI算法并非“生来”客观,招聘软件也会带来新的偏差和歧视,误刷掉有能力的应聘者,甚至让企业陷入被动境地。

哪些公司在做AI招聘工具?

招聘流程中,每一步都有AI加入的可能性。

Textio公司用机器学习来帮主管们优化岗位描述。Facebook、LinkedIn和ZipRecruiter都是利用算法的推荐,制作专门针对潜在的候选人招聘页面。

另一方面,Ideal、CVViZ等AI提供商推出“简历扫描”服务,可以筛选简历,留下那些符合条件的候选人。而当和候选人的面试结束后,HireVue、Modern Hire等向企业承诺他们的算法可以分析面试中的对话,预测哪些候选人未来会在工作上表现*。

Pymetric的核心(测试)小游戏

还有一些软件公司会提供AI嵌入的心理测试,如Humantic通过候选人的申请材料和个人网上档案来分析,Pymetrics表示可以用一些简单的小游戏达到一样的效果。

AI招聘工具是如何工作的?

要做好AI招聘工具,数据基础是*的难题。只有数据质量高,机器学习算法才能精确。

目前,大多数AI招聘工具都从现有员工的数据中进行提取训练的,例如要训练一个“简历扫描仪”,公司需要收集全部在职员工的简历,与销售数据或年度汇报等指标进行对比。这些数据搜集、梳理、分析将教会算法如何辨别与公司*员工最相似的简历。

当然,这种方法只能抓取现有员工的数据,难免陷入“窠臼”,甚至会出现用人的偏见

北美地区波士顿咨询集团AI部门的联合主管Shervin Khodabandeh说:“AI生来就是带有偏见的,因为世界上根本不存在毫无偏差的数据。”他解释说,这个难题在招聘中更加明显,因为可用数据非常有限——公司招聘的候选人,要过很多年才能看出他们未来会不会成为*员工。

为了解决这些问题,AI服务提供商们采用一种迂回的方式减少训练数据中的偏差。在康奈尔大学学习招聘算法的学生Manish Raghavan说,很多卖家都在遵守“4/5规则”的基础上设计算法(美国法律规定,以人口特征划分,任意人口组被选择的概率不得低于另一人口组的80%)。所以为了防止企业承担法律责任,经过精心设计的招聘AI工具会向企业推荐人数相等的男性和女性。

但Raghavan说,这并不意味着在人口特征以外的方面算法也能有同样的表现。如果训练数据大多来自男性员工,AI有可能学着把一些更多形容男性的特质与“成功”联系到一起。例如,简历上有参加高中橄榄球队的经历、在介绍信中被称为“摇滚明星”等。

“如果你有很多这样的特质,你可能会骗到很擅长预测表现杰出的男性的AI招聘工具,但在擅长女性预测AI招聘工具中你可能就会被淘汰”,Raghavan说道。

如果之后公司面试了十位*要求的男性和由申请工具挑选出的十位女性的随机样本,表面上来看这次招聘或许是消除了偏见的,但这份工作还是更容易由男性取得。

“搬起石头砸了自己的脚”

基于上文提到的“弊病”,AI招聘工具在很多情况下并不能优质、高效的完成任务。

2018年,亚马逊开发的“简历扫描仪”被爆歧视女性,声名狼藉。本想做招聘AI中的翘楚,却因不公平对待含有“女子”一词(如女子球队、女子俱乐部)的简历而马失前蹄。

HireVue曾对自家面试分析AI进行了周密的测试,这款产品可以分析候选人的面部细微变化、用词和语气。

但纽约大学AI Now学院的道德伦理“卫士”们评价这款工具是“假科学”、“对歧视的纵容”,还毫不留情地点名使用这款AI的企业,其中包括了赫赫有名的联合利华、希尔顿集团。面对集体抵制,美国联邦贸易协会正式控告HireVue。伊利诺伊州甚至通过了一项法案,要求企业披露对类似AI工具的应用。

前车之鉴,后事之师

波士顿咨询集团的Khodabandeh说,从之前事件中我们最应该吸取的经验就是不要盲从AI的推荐,招聘部门经理应该始终将决策权握在自己手中。“当你的算法告诉你‘这就是你想要的人’时,不应盲目信任它。”他补充道。

相反,Khodabandeh认为大众应该换个思路想问题。企业不应该让AI筛选*候选人,之后让招聘部门经理给它的“决定”盖个章,而是应该运用AI来审计企业本身的招聘流程。最理想的AI招聘应该是能够深入研究人事数据,但最终目的并不是预测下个*人选是谁,而是综合指出过去谁表现得更好。

Khodabandeh补充说:“AI算法的一个优势就是能够指出你的偏见,你会发现自己对某些候选人特质可能已经有了不公平、不负责任的偏向,甚至自己都没意识到可能已经触及了伦理道德的边线。这时候才轮到我们人类进场、主动去消除偏见和偏差,决定下一轮面试和招聘看重哪些候选人特质。”

企业必须非常了解对所应用算法的审计,康奈尔的研究员Raghavan说:“多数AI提供商只会和客户分享AI算法的内部逻辑。对很多客户来说,即使拿到审计证据,他们也没有对现实情况的评估能力。”

对于没有内部数据的企业,Raghavan的研究中给出了一些普适性提示:首先,对于AI系统探测给出的员工工作表现和面容、声音、行为等的关联性,要保持怀疑态度;其次,提供心理方面检测及结论的算法少之又少。因此这类算法提出的关联性一般只比随机取样稍微靠谱一点点,得出的结论本身可能就是一项新风险。

总结来看,大火的AI技术并不是无所不能。有时,HR们最需要的“高科技工具”只是他们的本能。

文章翻译自QUARTZ,原标题为 How to use AI hiring tools to reduce bias in recruiting,作者是Nicolás Rivero,由霞光社简单整理编辑后发表。

原文链接:https://qz.com/1914585/how-to-use-ai-hiring-tools-to-reduce-bias-in-recruiting/

【本文由投资界合作伙伴微信公众号:霞光社授权发布,本平台仅提供信息存储服务。】如有任何疑问题,请联系(editor@zero2ipo.com.cn)投资界处理。

相关资讯

AI数据总览

最新资讯

热门TOP5热门机构|VC情报局

去投资界看更多精彩内容
【声明:本页面数据来源于公开收集,未经核实,仅供展示和参考。本页面展示的数据信息不代表投资界观点,本页面数据不构成任何对于投资的建议。特别提示:投资有风险,决策请谨慎。】