光荣与梦想
截至目前,新闻报道仍是Narrative的核心业务。与任何刚出道的新闻记者一样,Narrative也有着自己的“光荣与梦想”:能够参与重大新闻事件的首发和后续报道。而要实现这一目的,Narrative仍需在机器学习、数据处理等事宜上进行大量投资,从而使机器能够更为准确理解人类语言和文字。事实上,Narrative在这方面已取得一些进展。哈蒙德说:“就金融业而言,我们算法能够读懂文章头条,能够识别某家企业股票的涨跌,了解到某位高管受聘或解聘,明白某家公司正制定并购计划。同时我们知道这些事件同公司股价波动之间的关系。”哈蒙德还表示,今后在Narrative所撰写体育新闻报道中,除常规的数据内容外,还将增加球员受伤或面临法律起诉等信息。
即便Narrative永远也无法实现获得普利策新闻奖的目标,其文章可能永远也不会具备美国作家琼·狄迪恩(Joan Didion)那种犀利的文风,但无论如何,该公司确实认识到了这样一个事实:我们的日常生活活动,正越来越多被转化为海量数据。举例来说,过去数年中,美国职业棒球大联盟已投资数百万美元,以在比赛场地安装高分辨率摄像头和高强度传感器,目的是分析每场比赛中各位球员的表现情况,如球员身体动作和棒球运动轨迹等信息。在不少情况下,体育新闻报道的取材就来自于这些数据当中。或许球队教练并没有意识到,自己所带领球队之所以被击败,主要原因就是球员身体过度疲劳所致。而这些结论,通常都需要数据作为强有力证据。
哈蒙德相信,随着Narrative市场规模的进一步增长,其业务范围也将形成更为高端的“食物链”:从社区新闻到新闻分析,最终再进入长篇深度报道业务。从某种程度上讲,人工记者和计算机算法或许能够协手合作,并发挥出各自优势。计算机的优势在于记忆无差错,并能够快速访问各类数据。而人工记者在进行采访过程中,能够做到“直奔主题”,在获得相关材料后,再将撰写文章的任务交给计算机。随着计算机处理此类任务次数的增长并能够获得更多数据,计算机的“叙事”技巧也将越来越高。当然,要达到这一阶段我们可能尚需等上一段时间。但最终有一天,或许类似我的这篇文章,根本就不需要我本人动手来写。哈蒙德说:“人类思考能力非常强大,也异常复杂,而电脑不过是机器而已。今后20年内,将不存在Narrative无法胜任的新闻报道领域。”
就目前而言,哈蒙德一再强调,Narrative算法并不是为了取代人工记者。哈蒙德透露,自己曾出席一次晚会,在那儿遇到了一名戏剧评论家。该评论家了解了哈蒙德的Narrative业务模式后,便对哈蒙德横加指责,称当前新闻从业者的日子已经过得很艰难,Narrative怎么忍心让写作机器人来抢走新闻记者的饭碗?
哈蒙德回忆道:“我当时盯着他回答说,难道你在美国儿童棒球小联盟(Little League)赛场上看见过记者的身影吗?搞清这一点对我们而言非常重要。尚没有任何新闻记者因Narrative开展的各项业务而丢掉饭碗。”
至少目前尚未如此。
本文来源投资界,原文:https://news.pedaily.cn/201205/20120504325779.shtml