随着AI和高性能电脑对计算能力和数据处理速度的需求日益增长。半导体行业也迈入了异构时代,即封装中广泛采用多个“Chiplet”。
在这样的背景下,信号传输速度的提升、功率传输的优化、设计规则的完善以及封装基板稳定性的增强显得尤为关键。然而,当前广泛应用的有机基板在面对这些挑战时显得力不从心,因此,寻求更优质的材料来替代有机基板。
玻璃基板,是英特尔作出的回答。
英特尔已在玻璃基板技术上投入了大约十年时间。去年9月,英特尔宣布率先推出用于下一代先进封装的玻璃基板,并计划在未来几年内向市场提供完整的解决方案,从而使单个封装内的晶体管数量不断增加,继续推动摩尔定律,满足以数据为中心的应用的算力需求。
英特尔表示,将于本十年晚些时候使用玻璃基板进行先进封装。第 一批获得玻璃基板处理的产品将是其规模最 大、利润最高的产品,例如高端HPC(高性能计算)和AI芯片。
那么,玻璃基板究竟拥有哪些显著优势?它在未来的发展中又将如何发挥重要作用?
01
为什么需要玻璃基板?
基板的需求始于早期的大规模集成芯片,随着晶体管数量增加,需要将它们连接到更多的引脚上。在过去20多年的时间里,打造基板所用的主要材料是有机塑料,但随着单个封装内的芯片和连线数量越来越多,有机基板正在接近物理极限。
因此,近年来出现了超高密度互连接口技术,如CoWoS和Intel的EMIB技术。这些技术使公司能够用快速、高密度的硅片来桥接芯片的关键路径,但成本相当高,而且没有完全解决有机基板的缺点。
在这样的背景下,业内公司开始致力于探索有机基板的真正替代者,寻求一种能与大型芯片完 美融合的基板材料。尽管这种材料在最 高级别的需求上可能无法完全替代CoWoS或EMIB技术,但它却能够提供比现有有机基板更出色的信号传输性能和更密集的布线能力。
玻璃基板如何适用于大芯片和先进封装?
首先,玻璃的主要成分是二氧化硅,在高温下更稳定。因此,玻璃基板可以更有效地处理更高的温度,同时有效管理高性能芯片的散热。这使得芯片具有卓 越的热稳定性和机械稳定性。
其次,玻璃基板可实现更高的互连密度,这对于下一代封装中的电力传输和信号路由至关重要,这将显著增强芯片封装内晶体管的连接性。典型的例子:英特尔将生产面向数据中心的系统级封装(SiP),具有数十个小瓦片(tile),功耗可能高达数千瓦。此类SiP需要小芯片之间非常密集的互连,同时确保整个封装在生产过程中或使用过程中不会因热量而弯曲。玻璃基板便是当下的最 优解。
最后,玻璃更容易变得平坦,这使得封装和光刻变得更容易,这对于下一代SiP来说非常重要。据悉,同样面积下,玻璃基板的开孔数量要比在有机材料上多得多,并且玻璃芯通孔之间的间隔能够小于 100 微米,这直接能让芯片之间的互连密度提升10倍。英特尔消息人士称,玻璃基板可将图案畸变减少 50%,从而提高光刻的聚焦深度,从而确保半导体制造更加精密和准确。英特尔预计玻璃基板能够实现容纳多片硅的超大型24×24cm SiP,凭借单一封装纳入更多晶体管,从而实现更强大的算力。
02
业界巨头争相布局
不只是英特尔,在当今半导体领域的激烈竞争中,玻璃基板作为半导体行业的一颗璀璨新星,正受到包括三星、LG以及苹果在内的众多科技巨头的青睐。
三星组建“军团”加码研发
近日,根据韩媒 sedaily 报道,三星集团已组建了一个新的跨部门联盟,三星电子、三星显示、三星电机等一众旗下子公司们组成“统一战线”,着手联合研发玻璃基板,推进商业化。其中,预计三星电子将掌握半导体与基板相结合的信息,三星显示将承担玻璃加工等任务。
三星将玻璃基板视为芯片封装的未来,在1月的CES 2024上,三星电机已提出,今年将建立一条玻璃基板原型生产线,目标是2025年生产原型,2026年实现量产。
组建“军团”加码研发,这足以见得三星集团对玻璃基板的重视,而在这项技术领域中,已有多个强劲对手入局。
LG Innotek已着手准备
今年3月,LG Innotek CEO Moon Hyuk-soo 在例行股东大会上表示:“将把半导体基板和电子系统组件业务发展到第 一。”在回答有关发展半导体玻璃基板业务的问题时,Moon Hyuk-soo 表示:“我们半导体基板的主要客户是美国一家大型半导体公司,该公司对玻璃基板表现出极大的兴趣。当然,我们正在为此做准备。”
AMD开始性能评估测试
AMD正对全球多家主要半导体基板企业的玻璃基板样品进行性能评估测试,计划将这一先进基板技术导入半导体制造。据悉,此次参与的上游企业包括日企新光电气、台企欣兴电子、韩企三星电机和奥地利AT&S。业界预测AMD最早于2025—2026年的产品中导入玻璃基板,以提升其HPC产品的竞争力。
苹果积极探索玻璃基板
据悉,苹果也正积极探索将玻璃基板技术应用于芯片封装 。玻璃基板的应用不仅是材料上的革新,更是一场全球性的技术竞赛,它有望为芯片技术带来革命性的突破,并可能成为未来芯片发展的关键方向之一。苹果公司的积极参与可能会加速玻璃基板技术的成熟,并为芯片性能的提升带来新的突破。
除了芯片制造领域,玻璃基板还有望在智能手机、平板电脑、电视等消费电子产品的显示屏制造中发挥重要作用。这些产品的更新换代速度不断加快,对高质量玻璃基板的需求也将持续增长。
目前来看,台积电在CoWoS领域火力全开,接连获得大厂订单享受红利,因而它并不急于投入巨资押注玻璃基板,仍将继续沿着现有路径升级迭代,以保持领 先地位不可撼动。或许等台积电觉得时机成熟,将会大幅加码。
03
先进封装中,主流的有机基板
在SiP及先进封装中最常用到的基板包含三类:有机基板、陶瓷基板、硅基板。
有机基板由于具有介电常数低、质量密度低、加工工艺简单、生产效率高和成本低等优点,是目前市场占有率最高的基板。有机基板是在传统印制电路板(PCB)的制造原理和工艺的基础上发展而来的,其尺寸更小、电气结构复杂,其制造难度远高于普通PCB。
有机基板主要包含:刚性有机基板、柔性有机基板以及刚柔结合有机基板。
其中,刚性有机基板以热固性树脂为基材,采用无机填料和玻璃纤维作为增强材料。这种基板通过热压成型工艺制成层压板,然后与铜箔复合制成。刚性有机基板适用于多种封装形式,如WB-BGA(通用芯片封装)、FC-BGA(处理器及南北桥芯片封装)和FC-CSP(智能手机处理器及其它部件封装)等。
柔性有机基板以CTE低且平整度高的PI薄膜为介质层,由介质层与铜箔复合制成。这种基板在LED/LCD、触控屏、计算机硬盘、光驱连接及功能组件、智能手机、平板电脑和可穿戴设备等领域有广泛应用。
除了上述两种基板,还有一些其他类型的有机基板也在先进封装中得到应用,例如ABF树脂、BT树脂和MIS基板等。这些基板材料的选择取决于具体的应用需求、封装形式以及芯片类型等因素。
目前中国封装材料和封装基板的国产化率都比较低,先进基板领域仍待突破。中国台湾、日本及韩国地区在全球封装基板市场中份额较高,行业竞争相对稳定。欣兴电子、景硕科技、南亚电路、日月光材料等中国台湾地区企业主要生产WB-CSP、WB-BGA、FC-CSP、FCBGA等封装基板。
从中国大陆企业布局来看,近年来,越来越多的中国企业正拓展封装基板领域,中国大陆目前仍处于快速扩产阶段,高端FC-BGA基板可以应用于AI、5G、大数据等领域要求的高性能CPU、GPU,但目前FC-BGA基板市场由欣兴电子、揖斐电、三星电机等企业垄断,中国大陆头部代表企业包括兴森科技、深南电路等在2023年对于高端FC-BGA封装基板方面积极布局,未来高端FC-BGA产能有望进一步扩充。
04
取代有机基板?
根据MarketsandMarkets最近的研究,全球玻璃基板市场预计将从2023年的71亿美元增长到2028年的84亿美元,2023年至2028年的复合年增长率为3.5%。
如此来看,玻璃基板的市场前景是乐观的,但是这一赛道依然面临着诸多不容忽视的挑战。比如技术的不成熟和居高不下的成本是挡在玻璃基板商用面前的两大拦路虎
玻璃基板虽然具有优异的物理特性,如高平整度、低热膨胀系数等,但其硬度大、脆性高的特点也增加了加工难度。如何在保证性能的同时,降低加工难度,提高良品率,是玻璃基板生产中的一大挑战。
此外在玻璃基板的复杂的生产过程中,需要高精度的工艺和设备,对技术要求极高。同时,为了保持竞争优势,企业需要持续投入大量研发资金,进行技术创新和产品升级。这也意味着,与任何新技术一样,玻璃基板的生产和封装成本将比经过验证的有机基板更昂贵。这包括原材料成本、加工成本以及后续的封装和测试成本。就连英特尔目前也还没有谈论具体的量产时间。
玻璃基板作为新生事物,其市场接受度还有待提高。同时,相关的行业标准和技术规范也尚未完善,这可能会影响其推广和应用。如此来看,玻璃基板距离大范围的商用或许需要十年以上的时间。
再者,玻璃基板与有机基板在各自的应用领域具有不同的特点和优势,这使得它们各自在某些特定的使用场景中更为适用。有机基板多用于消费电子领域,而玻璃基板大概率应用于高性能运算等场景,虽然玻璃基板在某些技术上展现出的潜在优势是有机基板不具备的,但有机基板因其成本效益和在某些特定应用中的成熟性,仍具有稳定的市场需求。因此,两者并不会完全取代对方,而是在各自的领域里发挥各自的优势。
05
带动玻璃通孔技术成为热门
不只是加速玻璃基板技术的研发,英特尔还计划引入玻璃通孔技术TGV(Through Glass Via),将类似于硅通孔的技术应用于玻璃基板。
在此之前简单了解什么是硅通孔,硅通孔技术即TSV(Through Silicon Via),它是通过在芯片与芯片之间、晶圆和晶圆之间制作垂直导通;TSV技术通过铜、钨、多晶硅等导电物质的填充,实现硅通孔的垂直电气互联,这项技术是目前唯 一的垂直电互联技术,是实现3D先进封装的关键技术之一。
玻璃通孔是穿过玻璃基板的垂直电气互连。与TSV相对应,作为一种可能替代硅基板的材料被认为是下一代三维集成的关键技术。
与硅基板相比,玻璃通孔互连技术具有优良的高频电学特性、大尺寸超薄玻璃基板成本低、工艺流程简单、机械稳定性强等优势。可应用于2.5D/3D晶圆级封装、芯片堆叠、MEMS传感器和半导体器件的3D集成、射频元件和模块、CMOS 图像传感器 、汽车射频和摄像头模块。基于此,玻璃通孔三维互连技术成为当前先进封装的研究热点。
英特尔在玻璃基板领域的突破无疑为整个行业带来了新的活力,同时也成功激发了业界对TGV技术以及基板性能的广泛兴趣和深远期待。这一突破不仅彰显了英特尔在技术创新上的领 先地位,也为整个电子产业带来了全新的发展机遇。
【本文由投资界合作伙伴微信公众号:半导体产业纵横授权发布,本平台仅提供信息存储服务。】如有任何疑问,请联系(editor@zero2ipo.com.cn)投资界处理。